Progression of Skills

Addition

Key Concept	Concrete	Pictorial	Abstract
Combining 2 parts together to make a whole (part, part, whole model).	Using cubes to represent two groups and adding them together.		$\begin{aligned} & 5+3=8 \\ & 8=3+5 \end{aligned}$ Using the part-part whole diagram to move into a more abstract approach.
		3 $5+3=8$ Using pictures to add two numbers together. Also supported through a bar model representation.	

Progression of Skills
Starting at the bigger number
and counting on.
Regrouping to make 10.
Using cubes, start with the larger
number and then count on the
smaller number in ones to find the
answer.

Progression of Skills

Adding 3 single digits.	$4+7+6=17$ Put the 4 and 6 together to make 10. Then add on the 7 .	$4+7+6=17$ Draw a picture representation of the question. Combine the 4 and 6 together to make 10. Then add on the 7.	$\begin{aligned} (4)+7+6 & =10+7 \\ 10 & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Column method without	$24+15=39$	$24+15=39$	$24+15=39$
	Using Base 10 or place value counters (dienes), add together the ones first before adding the tens.	Tens Ones ©(0) 0000 + + (10) 00000 30 9 $=39$ When finished using resources, children should draw the place value counters to help them solve addition equations.	Children should use the column method to help solve their addition equations.

Progression of Skills

Column method with regrouping.	$324+147=471$ Using place value counters, children to make the two numbers and place them on a place value grid.	$324+147=471$ Children can draw a pictorial representation of the columns and place value counters to help them solve the addition equations.	$324+147=471$ $\begin{gathered} 324+147= \\ 300+100=400 \\ 20+40=60 \\ 4+7=11 \\ 400+60+11=471 \end{gathered}$ Children to partition the numbers before using the column method, to help them understand the exchange.

Progression of Skills

Subtraction

Key Concept	Concrete	Pictorial	Abstract
Taking away ones.	$6-2=4$ Use physical resources to show that objects can be taken away.	6-2=4 Cross out pictorial representations to show what has been taken away.	$\begin{aligned} & 6-4=2 \\ & 18-3=15 \\ & 18=20-2 \end{aligned}$
Counting back.	$17-4=13$ Make the larger number in your subtraction equation. Take them away slowly, counting backwards in ones as you go.	$17-4=13$ Circle the greatest number and count back the smaller number, representing this with jumps on the number line. Children can also begin to draw their own number line to solve the equation.	$17-4=13$ Put 17 in your head and count back 4. What number have you arrived at?

Progression of Skills

Finding the difference.

Progression of Skills

Part-Part Whole Model.

Progression of Skills

Column method without regrouping.	36-14=?	36-14 = ?	36-14=?
	Use Base 10 (dienes) to make the bigger number and then take away the smaller number. Show how you partition numbers to subtract. Make the larger number first.	Draw the Base 10 (dienes) or use place value counters alongside the written calculation to help show working.	$\begin{aligned} & 36-14= \\ & 30+6 \\ & -\frac{10+4}{20+2}=22 \end{aligned}$ This will lead to a clear written column subtraction.

Progression of Skills

$234-88=?$

Children can start their formal written method by partitioning the number into clear place value columns.

Once children are confident with this they can use a more compact method.

$$
\begin{array}{r}
22^{512} 6 \cdot 0 \\
26 \cdot 5 \\
\hline 236 \cdot 5 \\
\hline
\end{array}
$$

This will lead the children into an understanding of subtracting any number, including decimals.

Progression of Skills

Now I can subtract my ones.

Then look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away my eight tens and complete my subtraction.

Show the children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.

Progression of Skills

Multiplication

Key Concept	Concrete	Pictorial	Abstract
Doubling.	Using a range of practical resources to show how to double a number.	Double 4 is 8. Double a a number.	$\begin{array}{cc} 16 \\ 10 \\ 1 \times 2 \\ 20+1 \times 2 \\ 20 & 12=32 \end{array}$ Partition a number and then double each part before you recombine it back together.
Counting in Multiples.	Count in multiples which are supported by concrete objects in equal groups.	0 5 10 15 20 25 30 35 40 45\qquad Use a number line or pictures to continue to support children in counting in multiples.	$2,4,6,8,10$ $5,10,15,20,25,30$ Count in multiples of a number aloud. Write sequences with multiples of numbers.

Progression of Skills

Repeated Addition.

Progression of Skills

Arrays Showing Commutative
Multiplication

Progression of Skills

Progression of Skills

Progression of Skills

Column Multiplication.	x 60 4 0100 1 1 3 3 010 10 1 1 1 Children can continue to be supported by place value counters at this stage of multiplication. It is important at this stage that they know to multiply the ones first and note down their answer following by the tens number which they also note down.	Introduce the bar model and number lines to support children when solving problems with multiplication alongside formal written methods.	Use long multiplication, making sure children understand that they need to clearly line up their numbers in columns. If it helps, children can write out the equation they are solving. This then helps children understand the more compact method.

Progression of Skills

Division

| Key Concept | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| Sharing Objects Into Groups. | I
 I have 12 cubes, can you share
 them equally into 2 groups? | Share 12 buns between three
 people.
 pictures or shapes to share | |

Progression of Skills

Division As Grouping.	Divide quantities into equal groups. Use a range of resources e.g. cubes, counters, objects or place value counters to support understanding.	 Use a number line to represent the jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be in each group.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Progression of Skills

Division With Arrays.

Progression of Skills

Division With A Remainder. $14 \div 3=4$ remainder 2

Progression of Skills

Short Division	
	$96 \div 3=32$

Use place value counters to divide using the bus stop method alongside.
$42 \div 3=$

Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.

Get children to continue to use drawn diagrams with dots of circles to help them divide numbers into equal groups.

Encourage them to move towards counting in multiples to divide more efficiently.

Begin with divisions that divide equally with no remainder.

Move onto divisions with a remainder.

Finally move into decimal places to divide the total accurately.

Progression of Skills

